The Global Epitaxial Wafer for Compound Semiconductor Market size is expected to reach $7.8 billion by 2030, rising at a market growth of 13.2% CAGR during the forecast period.
High electron mobility is a common property of quantum epitaxial wafers, which facilitates quicker electron movement and improved device performance. In high-speed electronic equipment, this is very crucial. Hence, the CS Quantum segment registered $195.9 million revenue in 2022. Quantum confinement effects are made possible by the exact control of the thickness of material at the nanoscale level provided by the epitaxial growth process. The engineering of quantum dots and wells with distinct energy levels and discrete electronic states makes use of these features. Some of the factors impacting the market are escalating demand for LED lighting, increasing implementation of compound semiconductors in smart technologies, and large initial capital expenditures.
The increasing popularity of energy-efficient LED lighting is driving the epitaxial wafer industry. Epitaxial wafer technology's benefits, including low manufacturing costs and improved device sensitivity, promote market expansion. The development of LED lighting systems in important developed and developing countries is driven by rising consumer awareness of green technology and a growing focus on decreasing global electricity usage. The epitaxial layer that is growing on top of the silicon wafer serves to improve the electrical properties of the wafer, raising the power density of LED illumination. Additionally, it is anticipated that the smart technologies of the next generation will be constructed out of a wide array of cutting-edge materials, such as carbon nanotubes, superconductors, as well as compound semiconductors such as GaN. A smart grid and other intelligent infrastructures are unable to function without the development of new power electronics, cable insulators, cable types, cable dielectrics, and energy storage technologies. Thus, the growing usage of LED lights and the emergence of smart technologies propels the growth of the market.
However, the cost of purchasing or constructing a power or non-power infrastructure that is anticipated to be repaid via power income is an "initial capital investment." This includes all expenses related to strategizing, designing, buying land, and constructing, as well as any investments made during construction. As a result, the wafer manufacturing process needs qualified people and skilled staff. The high price of chaveound semiconductor (CS) epitaxial wafers, which results from their expensive manufacturing procedures and raw materials, has a limited impact on the market's growth.
Based on application, the market is characterized into CS power electronics, CS RF/microwave, CS sensing, CS photonics, and CS quantum. The CS photonics segment procured a considerable growth rate in the market in 2022. A wide range of photons, including those with infrared, visible, and ultraviolet wavelengths, can be emitted and absorbed by compound semiconductors. They are adaptable for usage in a variety of applications, from optical communication to imaging and sensing, owing to this property. Photonic integrated circuits (PICs) with complicated and highly functional architectures can be made by integrating compound semiconductor photonics with traditional semiconductor electronics.
On the basis of end user, the market is classified into digital economy, industrial, energy & power, defense/security, transport, consumer electronics, healthcare, and space. The healthcare segment witnessed a promising growth rate in the market in 2022. Numerous medical device improvements now taking place are anticipated to drive up demand for cutting-edge compound semiconductors. Advances in semiconductor technology are required as a result of these advances. It is projected that there would be an increase in the demand for epitaxial wafers for compound semiconductors in the medical industry due to a number of variables.
Report Attribute | Details |
---|---|
Market size value in 2022 | USD 3 Billion |
Market size forecast in 2030 | USD 7.8 Billion |
Base Year | 2022 |
Historical Period | 2019 to 2021 |
Forecast Period | 2023 to 2030 |
Revenue Growth Rate | CAGR of 13.2% from 2023 to 2030 |
Number of Pages | 234 |
Number of Table | 320 |
Report coverage | Market Trends, Revenue Estimation and Forecast, Segmentation Analysis, Regional and Country Breakdown, Companies Strategic Developments, Company Profiling |
Segments covered | Application, End User, Region |
Country scope | US, Canada, Mexico, Germany, UK, France, Russia, Spain, Italy, China, Japan, India, South Korea, Singapore, Malaysia, Brazil, Argentina, UAE, Saudi Arabia, South Africa, Nigeria |
Growth Drivers |
|
Restraints |
|
Region wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The Asia Pacific segment garnered the maximum revenue share in the market in 2022. The market's growth is linked to a number of variables, including the increasing adoption of IoT, self-driving vehicles, and smartphone penetration. As smartphone demand has increased and smartphone technology has advanced, smaller and thicker integrated circuits (ICs) have appeared. These semiconductors are used in a variety of electronic equipment, including consumer electronics, telecommunications gear, computers, and other things. As a result, this factor will lead to an increase in the region's demand for epitaxial wafers.
Free Valuable Insights: Global Epitaxial Wafer for Compound Semiconductor Market size to reach USD 7.8 Billion by 2030
The market research report covers the analysis of key stake holders of the market. Key companies profiled in the report include II-VI Incorporated, WOLFSPEED, INC., Ennostar, Inc., GlobalWafers Co., Ltd. (Sino-American Silicon Products Inc.), SVT Associates, Inc., International Quantum Epitaxy, Plc., Masimo Semiconductor, Inc., Nichia Corporation, Siltronic AG and Sumitomo Electric Industries, Ltd.
By Application
By End User
By Geography
The Market size is projected to reach USD 7.8 billion by 2030.
Escalating demand for LED lighting are driving the Market in coming years, however, Large initial capital expenditures restraints the growth of the Market.
II-VI Incorporated, WOLFSPEED, INC., Ennostar, Inc., GlobalWafers Co., Ltd. (Sino-American Silicon Products Inc.), SVT Associates, Inc., International Quantum Epitaxy, Plc., Masimo Semiconductor, Inc., Nichia Corporation, Siltronic AG and Sumitomo Electric Industries, Ltd.
The expected CAGR of this Market is 13.2% from 2023 to 2030.
The CS Power Electronics segment is leading the Market by Application in 2022; thereby, achieving a market value of $2.5 billion by 2030.
The Asia Pacific region dominated the Global Epitaxial Wafer for Compound Semiconductor Market by Region in 2022 and would continue to be a dominant market till 2030; thereby, achieving a market value of $3.5 billion by 2030.
Our team of dedicated experts can provide you with attractive expansion opportunities for your business.